Unlike in Drosophila Meroistic Ovaries, Hippo Represses Notch in Blattella germanica Panoistic Ovaries, Triggering the Mitosis-Endocycle Switch in the Follicular Cells
نویسندگان
چکیده
During insect oogenesis, the follicular epithelium undergoes both cell proliferation and apoptosis, thus modulating ovarian follicle growth. The Hippo pathway is key in these processes, and has been thoroughly studied in the meroistic ovaries of Drosophila melanogaster. However, nothing is known about the role of the Hippo pathway in primitive panoistic ovaries. This work examines the mRNA expression levels of the main components of the Hippo pathway in the panoistic ovary of the basal insect species Blattella germanica, and demonstrates the function of Hippo through RNAi. In Hippo-depleted specimens, the follicular cells of the basal ovarian follicles proliferate without arresting cytokinesis; the epithelium therefore becomes bilayered, impairing ovarian follicle growth. This phenotype is accompanied by long stalks between the ovarian follicles. In D. melanogaster loss of function of Notch determines that the stalk is not developed. With this in mind, we tested whether Hippo and Notch pathways are related in B. germanica. In Notch (only)-depleted females, no stalks were formed between the ovarian follicles. Simultaneous depletion of Hippo and Notch rescued partially the stalk to wild-type. Unlike in the meroistic ovaries of D. melanogaster, in panoistic ovaries the Hippo pathway appears to regulate follicular cell proliferation by acting as a repressor of Notch, triggering the switch from mitosis to the endocycle in the follicular cells. The phylogenetically basal position of B. germanica suggests that this might be the ancestral function of Hippo in insect ovaries.
منابع مشابه
The Notch pathway regulates both the proliferation and differentiation of follicular cells in the panoistic ovary of Blattella germanica
The Notch pathway is an essential regulator of cell proliferation and differentiation during development. Its involvement in insect oogenesis has been examined in insect species with meroistic ovaries, and it is known to play a fundamental role in cell fate decisions and the induction of the mitosis-to-endocycle switch in follicular cells (FCs). This work reports the functions of the main compo...
متن کاملCrosstalk of EGFR signalling with Notch and Hippo pathways to regulate cell specification, migration and proliferation in cockroach panoistic ovaries.
BACKGROUND INFORMATION Epidermal growth factor receptor (EGFR) signalling is crucial for the regulation of multiple developmental processes. Its function in relation to insect oogenesis has been thoroughly studied in the fly Drosophila melanogaster, which possesses ovaries of the highly modified meroistic type. Conversely, studies in other insect species with different ovary types are scarce. W...
متن کاملNotch-dependent downregulation of the homeodomain gene cut is required for the mitotic cycle/endocycle switch and cell differentiation in Drosophila follicle cells.
During Drosophila mid-oogenesis, follicular epithelial cells switch from the mitotic cycle to the specialized endocycle in which the M phase is skipped. The switch, along with cell differentiation in follicle cells, is induced by Notch signaling. We show that the homeodomain gene cut functions as a linker between Notch and genes that are involved in cell-cycle progression. Cut was expressed in ...
متن کاملLocalization of RNA transcription sites in insect oocytes using microinjections of 5-bromouridine 5'-triphosphate.
In the present study we used 5-bromouridine 5'-triphosphate (BrUTP) microinjections to localize the transcription sites in oocytes of insects with different types of the ovarium structure: panoistic, meroistic polytrophic, and meroistic telotrophic. We found that in an insect with panoistic ovaries (Acheta domesticus), oocyte nuclei maintain their transcription activity during the long period o...
متن کاملChorion formation in panoistic ovaries requires windei and trimethylation of histone 3 lysine 9.
Epigenetic modifications play key roles in transcriptional regulation. Trimethylation of histone 3 lysine 9 (H3K9me3) is one of the most widely studied histone post-translational modifications, and has been linked to transcriptional repression. In Drosophila melanogaster, Windei is needed for H3K9me3 in female germ line cells. Here, we report the occurrence of a D. melanogaster Windei (Wde) ort...
متن کامل